Nombres et calculs numériques

1 Les nombres entiers

- ✓ Les *nombres entiers naturels* sont ceux qui servent à compter : 0; 1; 2; ...; 2019; ... Les entiers naturels appartiennent à un ensemble de nombres noté \mathbb{N} .
- ✓ les *nombres entiers relatifs* qui sont les entiers naturels et leurs opposés : -18; -7; +9; ... Les entiers relatifs appartiennent à un ensemble de nombres noté \mathbb{Z} .

2 Multiples, diviseurs et nombres premiers

2.1 Multiples et diviseurs

Définitions: multiples et diviseurs

Soit a et b deux nombres entiers. a est un diviseur de b lorsqu'il existe k entier, tel que $b = k \times a$.

- On peut dire que *b* est un multiple de *a*.
- On peut dire que *a* divise *b*.
- On peut dire que *b* est un diviseur de *a*.

Soit $a \in \mathbb{Z}$. Si b et b' sont deux multiples de a alors b + b' est un multiple de a.

Exemples: $21 = 3 \times 7$. Donc 3 et 7 sont des diviseurs de 21, et 21 est un multiple de 3 et est aussi un multiple de 7.

 $21 = 3 \times 7 \text{ et } 15 = 3 \times 5$.

21 et 15 sont des multiples de 3. 21 + 15 = 36, donc 36 est un 3.

En effet: $36 = 21 + 15 = 3 \times 7 + 3 \times 5 = 3 \times (7 + 5) = 3 \times 12$.

Propriété: nombres pairs et impairs

Soit $n \in \mathbb{Z}$. a est un nombre :

- **pair** losqu'il existe $p \in \mathbb{Z}$ tel que $n = 2 \times p$, soit n = 2p.
- **impair** losqu'il existe $p \in \mathbb{Z}$ tel que $n = 2 \times p + 1$, soit n = 2p + 1.

Propriété: carré d'un nombre impair

Soit $n \in \mathbb{Z}$. L'entier relatif n^2 est impair, si et seulement si a est impair.

Démonstration : Soit n un nombre impair. Il existe en entier p tel que n = 2p + 1.

$$n^2 = (2p+1)^2 = (2p+1) \times (2p+1) = 4p^2 + 2p + 2p + 1 = 2(2p^2 + 2p) + 1.$$

Onpose $P = 2p^2 + 2p$ qui est une entier car p l'est.

 $n^2 = 2P + 1$

Comme il existe un entier *P* tel que $n^2 = 2P + 1$, n^2 est aussi un nombre impair.

2.2 Nombres premiers

Définition : nombre premier

Un entier naturel non nul est dit **premier** lorsqu'il possède exactement deux diviseurs distincts : 1 et lui-même.

Remarque: 1 n'est pas premier car il n'a qu'un seul diviseur, lui-même.

Les dix premiers nombres premiers sont: 2; 3; 5; 7; 11; 13; 17; 19; 23; 29.

Propriété: diviseur premier d'un entier

Soit n un nombre entier naturel qui n'est pas premier.

Son plus petit diviseur différent de 1 est un nombre premier plus petit ou égal à \sqrt{n} .

Exemple: $90 = 2 \times 3 \times 3 \times 5$.

Le plus petit diviseur est 2 qui est premier.

Chacun des diviseurs de 90 est plus petit que $\sqrt{90}$, ($\sqrt{90} \approx 9.4$).

Théorème:

Quel que soit l'entier naturel n supérieur ou égal à 2, si n n'est divisible par aucun nombre premier inférieur à \sqrt{n} alors n est premier.

Propriété: décomposition d'un nombre premier

Tout nombre entier peut se décomposer de manière unique sous la forme d'un produit de nombres premiers.

Méthode et exercices 1 et 2 page 50

Propriété: fraction irréductible

Une fraction est irréductible si le numérateur et le dénominateur n'admettent qu'un seul diviseur en commun : 1.

Remarque: on dit que ces deux nombres sont premiers entre eux.

Méthode et exercice 3 page 50

Puissances entières d'un nombre relatif

Notations a^n et a^{-n}

Définition: puissance d'un nombre

Si a est un nombre et n un entier naturel non nul, on appelle puissance n-ième de a, le nombre $a^n = a \times a \times \cdots \times a$

On pose, pour
$$a \neq 0$$
, $a^{-n} = \frac{1}{a^n} = \underbrace{\frac{1}{a \times a \times \cdots \times a}}_{\text{n facteurs}}$.

Par convention, on pose $a^0 = 1$, pour tout nombre a non nul.

 a^{-n} (lu "a puissancen") est appelé **puissance n-ième** de a et n est appelé l'**exposant**.

Remarque: En particulier, $a^1 = a$ et $a^{-1} = \frac{1}{a}$

Calculs avec les puissances

Rèbles: calculs avec les puissances

Si a et b sont des nombres et n et m des entiers relatifs, alors

$$\bullet a^n \times a^m = a^{n+m}$$

•
$$a^n \times b^n = (a \times b)^n$$

$$\bullet \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$\bullet \frac{a^n}{a^m} = a^{n-n}$$

$$\bullet (a^n)^m = a^{n \times m}$$

Remarque: Attention, il n'y a pas de règle avec les sommes de puissances.

Exemples: $3^2 = 9$; $2^4 = 2 \times 2 \times 2 \times 2 = 16$; $2^{-2} = \frac{1}{2^2} = \frac{1}{4}$

$$(-3)^2 = (-3) \times (-3) = 9;$$
 $-3^2 = -3 \times 3 = -9$

$$3^4 \times 3^5 = \underbrace{3 \times \dots \times 3}_{\text{4 termes}} \times \underbrace{3 \times \dots \times 3}_{\text{5 termes}} = \underbrace{3 \times \dots \times 3}_{\text{9 termes}} = 3^9$$

$$(\frac{5}{2})^2 = \frac{5}{2} \times \frac{5}{2} = \frac{5^2}{2^2}; \quad (-3)^3 = (-3) \times (-3) \times (-3) = -3^3 = -27$$

$$4^5 \times 4^{-2} = 4^5 \times \frac{1}{4^2} = \frac{4 \times \dots \times 4}{4 \times 4} = 4 \times 4 \times 4 = 4^3$$

$$2^3 \times 2^2 = 2^5$$
; $5^7 \times 5^{-4} = 5^3$; $\left(\frac{2}{5}\right)^3 = \frac{2^3}{5^3} = \frac{8}{125}$

Méthode et exercices 4 à 10 pages 51 et 52

Racine carrée

Définitions

Définition: racine carrée

La **r**acine carrée d'un nombre réel positif a, notée \sqrt{a} , est l'unique nombre réel positif dont le carré est égal à a: Pour $a \ge 0$, \sqrt{a} est le nombre réel tel que $\sqrt{a} \times \sqrt{a} = (\sqrt{a})^2 = a$.

Définition: carré parfait

Un carré parfait est le carré d'un nombre entier.

Remarque:

Le carré d'un nombre est toujours positif.

Lorsque a est nombre strictemement négatif, \sqrt{a} n'existe pas et n'a donc pas de sens.

Calculs avec les racines carrées 4.2

Règles: calculs avec les racines carrées

Soit a et b deux nombres positifs, alors :

•
$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$

• Si
$$b \neq 0, \sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

- Si a et b sont strictement positifs, alors $\sqrt{a+b} < \sqrt{a} + \sqrt{b}$

Attention, il n'y a pas de règle avec les sommes de racines carrées : $\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$, et $\sqrt{a-b} \neq \sqrt{a} - \sqrt{b}$.

Exemples:

$$\sqrt{9} = 3 \operatorname{car} 3^2 = 9$$
; $\sqrt{121} = 11 \operatorname{car} 11^2 = 121$;
Pour $x \ge 0$, $\sqrt{4x^2} = 2x \operatorname{car} (2x)^2 = (2x) \times (2x) = 4x^2$
 $\sqrt{2} = \dots \sqrt{2}$ qui est le nombre réel tel que $\sqrt{2}^2 = 2$

•
$$\sqrt{9 \times 16} = \sqrt{9} \times \sqrt{16} = 3 \times 4 = 12$$

• $\sqrt{\frac{49}{25}} = \frac{\sqrt{49}}{\sqrt{25}} = \frac{7}{5}$.

$$\sqrt{\frac{49}{25}} = \frac{\sqrt{49}}{\sqrt{25}} = \frac{7}{5}.$$

•
$$\sqrt{2}(\sqrt{2} + \sqrt{8}) = \sqrt{2}^2 + \sqrt{2}\sqrt{8} = 2 + \sqrt{16} = 2 + 4 = 6$$

•
$$\sqrt{9+16} = \sqrt{25} = 5 \neq \sqrt{9} + \sqrt{16} = 7$$

Méthode et exercices 11 à 14 page 53

Nota Bene:

- La somme est l'opération qui traite de l'addition comme de la soustraction. En effet, soustraire un nombre, c'est ajouter son opposé : 2-5 = (+2) + (-5) où 2-5 est bien une somme.
- le produit est l'opération qui traite de la multiplication comme de la division.

En effet, diviser par un nombre, c'est multiplier par son inverse : $9 \div 5 = \frac{9}{5} = 9 \times \frac{1}{5}$ où $9 \div 5$ est bien un produit.

5 Ensemble de nombres

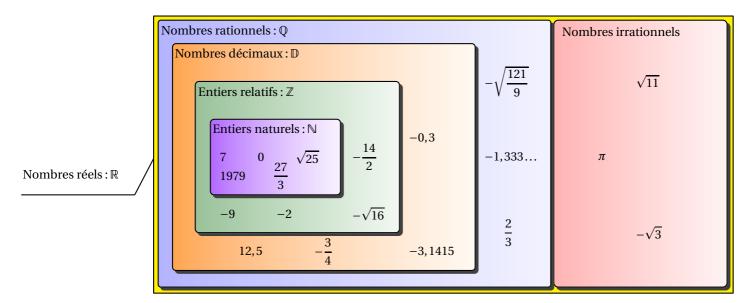
5.1 Définitions

Définitions : ensemble de nombres

- ✓ Les *nombres entiers naturels* sont ceux, positifs, qui servent à compter : 0; 1; 2; ...; 2019; ... L'ensemble des entiers naturels est noté \mathbb{N} .
- ✓ les *nombres entiers relatifs* qui sont les entiers naturels et leurs opposés (négatifs) : -18; -7; +9; ... L'ensemble des entiers relatifs est noté \mathbb{Z} .
- ✓ Les *nombres décimaux* sont les nombres s'écrivant comme le quotient d'un entier par un nombre de la forme $2^n \times 5^p$. Autrement dit, ce sont ceux qui n'ont pas une infinité de chiffres après la virgule : -7,2; 0,692; -11; ...; 3,38; ... L'ensemble des nombres décimaux est noté \mathbb{D} .
- ✓ Les *nombres rationnels* sont les nombres s'écrivant sous la forme d'un quotient quelconque (un entier relatif par un entier naturel non nul). Autrement dit, ce sont les fractions : $\frac{7}{3}$; $-\frac{13}{9}$; $5 = \frac{5}{1}$; ...; $-1,25 = -\frac{5}{4}$; ... L'ensemble des nombres ratinnels est noté $\mathbb Q$ (penser « $\mathbb Q$ comme quotient »).
- ✓ L'ensemble des *nombres réels* est constitué des nombres rationnels et des nombres irrationnels (ceux ne pouvant pas s'écrire sous la forme d'une fraction) : π ; $\sqrt{2}$; ...

 L'ensemble des nombres réels est noté $\mathbb R$ (ensemble le plus souvent utilisé).

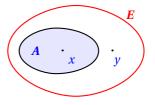
5.2 Une représentation de ces ensembles



5.3 Appartenance et inclusion

Définition:

On dit qu'un ensemble A est **inclus** dans un ensemble E, lorsque tous les éléments de A sont aussi des éléments de E. L'ensemble A est alors appelé **sous-ensemble** ou **partie** de E.



Notation:

Par exemple, dans le schéma ci-dessus, A est **inclus** dans E, on note alors : $A \subset E$.

Par contre, ne pas confondre avec le fait que x appartient à A (et donc à E), qui se note : $x \in A$.

Bien entendu, y appartient à E mais **n'appartient pas** à A. On se souvient de la notation : $y \notin A$.

Exemples: L'ensemble $A = \{1 ; o ; n ; g\}$ est un sous-ensemble de $E = \{1 ; o ; s ; a ; n ; g ; e\}$. On note alors $A \subset E$. En revanche, $B = \{1 ; i ; s ; a\}$ n'est pas un sous-ensemble de E puisque $i \in B$ mais $i \notin E$. On note alors $B \not\in E$.

On a $\mathbb{N} \subset \mathbb{Z}$ puisque tout entier naturel est un entier relatif. Par contre $-2 \in \mathbb{Z}$ mais $-2 \notin \mathbb{N}$, donc $\mathbb{Z} \notin \mathbb{N}$. De même on a $\mathbb{Z} \subset \mathbb{D}$; $\mathbb{D} \subset \mathbb{Q}$ et $\mathbb{Q} \subset \mathbb{R}$.

Finalement, sur les principaux ensembles de nombres on retiendra que :

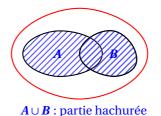
Propriété (admise) : $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$

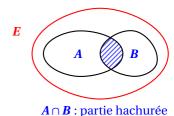
5.4 Réunion d'ensembles, intersection d'ensembles

Définitions:

On note A et B deux parties d'un ensemble E:

- La réunion des parties A et B est notée $A \cup B$: c'est la partie de E constituée des éléments appartenant à A ou à B.
- L'intersection des parties A et B est notée $A \cap B$: c'est la partie de E constituée des éléments appartenant à A et à B.



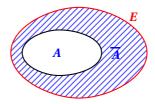


5.5 Complémentaire

Définition:

Soit A un sous-ensemble de E.

L'ensemble des éléments de E qui **n'appartiennent pas** à \overline{A} est appelé complémentaire de A dans E. Cet ensemble et noté \overline{A} .



 $\textbf{\textit{Exemples:}} \quad \bullet \ \textit{A} = \{\texttt{g} \; ; \texttt{a} \; ; \texttt{r} \; ; \texttt{e}\} \; \texttt{est un sous-ensemble de} \; \textit{E} = \{\texttt{p} \; ; \texttt{y} \; ; \texttt{t} \; ; \texttt{h} \; ; \texttt{a} \; ; \texttt{g} \; ; \texttt{o} \; ; \texttt{r} \; ; \texttt{e}\}. \; \texttt{On a:} \; \overline{\textit{A}} = \{\texttt{p} \; ; \texttt{y} \; ; \texttt{t} \; ; \texttt{h} \; ; \texttt{o}\} \; \texttt{on a:} \; \overline{\textit{A}} = \{\texttt{p} \; ; \texttt{y} \; ; \texttt{t} \; ; \texttt{h} \; ; \texttt{o}\}$

On remarquera que $A \subset E$, $\overline{A} \subset E$ et que $A \cup \overline{A} = E$, $A \cap \overline{A} = \emptyset$ (ensemble vide)

• Soient A et B les ensembles de lettres suivants : $A = \{p ; y ; t ; h ; a ; g ; o ; r ; e\}$ et $B = \{t ; h ; a ; l ; e ; s\}$

On a alors : $A \cup B = \{p ; y ; t ; h ; a ; g ; o ; r ; e ; l ; s\}$ et $A \cap B = \{t ; h ; a ; e \}$

Remarque: si A = {d; e; u; x} et B = {t; r; o; i; s} alors $A \cap B$ ne contient aucun élément: on note alors $A \cap B = \emptyset$ (ensemble vide).